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View Factor from Conical Surface
by Contour Integration

J. B. UrquHART*
The Boeing Company, Huntsville, Ala.

Introduction

HE prediction of radiative heat transfer from the engine

exhaust plume to the stage is necessary to evaluate
thermal protection requirements. Therefore, the radiation
view factor between the plume and the stage must be evalu-
ated to determine the radiant heat rates. The normal
approach to this problem is to assume that the exhaust plume
behaves as a radiating cone; thus the problem is reduced to
determining the view factor between a conical surface and a
differential area on the stage. Using this approach, Mori-
zumi?! and Bobco? attempted to evaluate the view factor from
a differential area to a cone. Morizumi used the Nusselt
double-projection method. His analysis has the disad-
vantage of determining the view factor to a conical surface
that is truncated by the differential-area line of sight instead
of by a plane perpendicular to the cone axis. Bobco at-
tempted to develop an expression for the view factor by
integrating the general equation for view factors;

cosf; cosb;
Poacs= [ [ it ®

where 6y, 6, and r are indicated in Fig. 1. He successfully
integrated Eq. (1) once but was then forced to integrate the
resulting expression numerically.

Analysis

An analysis is developed here that will yield the view factor
from a differential area to a cone. By applying Stokes
theorem? to Eq. (1) the view-factor equation is reduced to
contour integrals. For the configuration of interest (Fig. 1)
the differential-area normal is parallel to the cone axis. The
view factor for this configuration can therefore be represented

Fig. 1 View factor from
differential area to cone.
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Fig. 2 Contour lines.

as a single contour integral

(z — x)dz — zdx

FdA —ds =
S ¢, 27r?

@

This contour integral is integrated around the path that is
the limit of sight on the cone from the differential area. The
contour path is shown in Fig. 2.

To integrate Eq. (2),  and z are written in polar form using
the cone radius R and the angle ¢ measured from the z axis
in the x — z plane. The cone radius is

R = y tan® 3)

where 8 is the half angle of the cone. Employing symmetry
and expanding Eq. (2) into regular integrals yields
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Fig. 3 View factor vs distance along cone axis for various
E’s and ¢’s.
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Fig; 4 Limiting view factor.

From Fig. 1 the equation for 72 is

2 = y2[(y/y0)? sec2d — 2(y/y) {1 + (x1/y1) tand cosp} +
(m/y)? + 1] (B)

Equation (5) is substituted into Eq. (4) and the resulting
expression is integrated. The angle at the limit of sight on
the conical surface is

¢o = cosI[(yi/x1) tanb] (6)

Substituting Eq. (6) for ¢ and putting the solution in
nondimensional form yields

sinf _ secl _
Foap s, = r tan l[m (7 — 1):| +
1 I:E + tan0]1/2 _

- tan™! T — tand
(1 — 1)? + E* — %% tan? %
[(7 tanf + E)2 4+ (7 — 1)2]¥2
[(7 tan8 — E)? + (7 — 1)2]v2

tan 1 “:(7'7 tang + E)* + (7 — 1)2]1/2 (E — tanf\1?
an (7 tanf — E)? + (5 — 1)2 E + tand

)

where 7 = y/y1 and F = z1/y1. Equation (7) is the ex-
pression for the view factor from the differential area to the
conical surface. The only restrictions on this equation are
that E > tanf and y > 0.

On the conical boundary (E = tan 6), Eq. (7) reduces to

Faa s, = sing/2 + £ 8

In some applications, the limiting value of the view factor
as the cone length approaches infinity is of interest. From
Eq. (7)

. sinf | 1 E + tanf |V
[ — -1 — p—
I Fosas = 5=+ T tan [E - tan0:|
11 — tan2f E — tan@ ]2
- —1
7 1 + tan2f tan [E + tan@] ®

Figure 3 shows graphs of the view factor vs the distance
down the cone axis for cone half-angles of 10°, 20°, 30°, and
40°. This distance is measured from the differential area (at
Y = 0) and nondimensionalized with respect to the cone radius
at the differential-area y position. Y/R, is a more con-
venient parameter than 5. The relation between the two
nondimensional distances is

Y/R, = (3 — 1)/tan® (10)

Figure 4 is a graph of the limiting view factor (Eq. 10)
vs the differential-area position factor E for various cone
half-angles. This graph shows that for E > 10 increasing
has little effect on the limiting view factor.
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Conclusions

The analysis presents a more useable result than the Bobco
and Morizumi approaches because it yields an algebraic
equation for the view factor. This enables rapid calculation
of view factors with the slide rule or calculation machine.
All of the data presented in Figs. 3 and 4 were obtained from
a digital computer program that required less than 2 min
execution time.
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Dynamic Plastic Response of
Finite Bars
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Introduction

HIS Note examines the dynamie response of a fixed-

free, finite bar subjected to an axially applied impact
load where the load is sufficiently high to result in plastic
strains (Fig. 1). The material of the bar is represented by a
bilinear static stress-strain diagram where the elastic and
plastic moduli are denoted by E, and Eji, respectively. By
varying the slope of the plastic region of this curve (E,/Ey),
it is possible to explore the effects of strain hardening on this
problem, including the limiting case of elastic wave propaga-
tion in which E:/E, is equal to one.

Analysis

In the problem considered, the time history of applied
normal stress at the end z = 0 is given by

s(0) = 0,6 <0 1)
o) =P, t>0 @)

where P > oy (yield stress). In this example the applied
stress was selected such that P = 409. The boundary condi-
tion at the fixed end of the bar is that the particle velocity is
zero at x = L for all time, or

o(Lt) =0 3

For one-dimensional plastic waves the rate-dependent
theory of Malvern!-? results in the following set of quasilinear
partial differential equations:

do/ox = pdu/dt @
Qe/0t = dv/dx (5)
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